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Abstract

Purpose – Sets out to discuss laminar free convection characteristics of air confined to a square cavity
and a horizontal rectangular cavity (aspect ratio A ¼ 2) along with the viable isosceles triangular
cavities and right-angle triangular cavities that may be inscribed inside the two original cavities.

Design/methodology/approach – The three distinct cavities shared the base wall as the heated
wall, while the remaining sides and upper walls are cold. The finite volume method is used to perform
the numerical computation of the transient conservation equations of mass, momentum and energy.
The methodology takes into account the second-order-accurate quick scheme for the discretization of
the convective term, whereas the pressure-velocity coupling is handled with the simple scheme. The
working fluid is air, which is not assumed as a Boussinesqian gas, so that all influencing
thermophysical properties of air are taken as temperature-dependent. The cavity problem is examined
over a variety of height-based Grashof numbers ranging from 103 to 106.

Findings – Numerical results are reported for the velocity fields, the temperature field as well as the
local and mean wall heat fluxes along the heated base wall. It was found that the airflow remains
symmetric for the isosceles triangular cavity with aspect ratio A ¼ 1 even at high Grashof numbers. In
contrast, for an isosceles triangular cavity with an aspect ratio A ¼ 2, a pitchfork bifurcation begins to
form at a critical Grashof number of 2 £ 105, breaking the airflow symmetry. The computed local and
mean heat fluxes along the hot base wall are compared for the three configurations under study and the
corresponding maximum heat transfer levels are clearly identified for the two aspect ratiosA ¼ 1 and 2.

Research limitations/implications – As a continuity of this work, there are two avenues that
future research could explore and indeed are presently being explored by the authors within these
geometries. The first deals with heat transfer enhancement using mixture of gases. The second is to
re-examine the problem under turbulent conditions.

Originality/value – The present study seeks to maximize the convection heat transport in cavities
and minimize their sizes. The peculiarity of the derived cavities is their cross-section area being half of
the cross-section area of the basic cavities.
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Nomenclature
A ¼ aspect ratio of cavity ( ¼ L/H)
cp ¼ specific isobaric heat capacity, J/kg K
g ¼ acceleration of gravity, m/s2

GrH ¼ Grashof number
( ¼ gb(TH 2 TC)H 3/n 2)

h ¼ mean convective coefficient, W/m2 K
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H ¼ height of cavity, m
L ¼ base of the cavity, m
k ¼ thermal conductivity, W/m K
NuH ¼ mean Nusselt number ( ¼ hH/k)
p ¼ static pressure, Pa
Pr ¼ Prandtl number ( ¼ n/a)
qw ¼ local wall heat flux, W/m2

Qw ¼ mean heat flux, W/m2

RaH ¼ Rayleigh number ( ¼ GrH £ Pr)
t ¼ time, s
T ¼ temperature, K
TC ¼ cold wall temperature, K
TH ¼ hot wall temperature, K
Tr ¼ reference temperature

( ¼ (TH þ TC)/2), K
u, v ¼ velocities in the x and y directions,

m/s

x, y ¼ horizontal and vertical coordinates, m
X ¼ dimensionless horizontal coordinate

( ¼ x/L)
Y ¼ dimensionless vertical coordinate

along the mid-plane ( ¼ y/H)

Greek letters
a ¼ thermal diffusivity ( ¼ k/rcp), m2/s
b ¼ coefficient of volumetric thermal

expansion, 1/K
m ¼ viscosity, kg/m s
n ¼ kinematic viscosity ( ¼ m/r), m2/s
u ¼ dimensionless temperature

( ¼ (T 2 TC)/(TH 2 TC))
r ¼ density, kg/m3

c ¼ stream function
(u ¼ ›c=›y; v ¼ 2›c=›x), m2/s

Introduction
As noted by Gebhart et al. (1988), Raithby and Hollands (1998) and Jaluria (2003), the
analysis of natural convection of fluids (gases and regular liquids) bounded by square,
vertical and horizontal rectangular cavities has been and continues to be an area of
considerable interest in engineering, geophysics and environmental sciences. There is
a wealth of publications dealing with this kind of two-dimensional cavities thanks to
the development of potent grid generation software and efficient computational
methods for solving the complete set of Navier-Stokes and energy equations with great
precision (Tannehill et al., 1997).

The present paper addresses laminar natural convection of air inside a square
cavity (aspect ratio A ¼ 1) and a horizontal rectangular cavity (aspect ratio A ¼ 2)
along with the viable isosceles triangular cavities and right-angle triangular cavities
that can be inscribed inside the square and horizontal rectangular cavities. For
horizontal rectangular cavities with A ¼ 2, Corcione (2003) presented an exhaustive
analysis related to heated bottom walls using several cooling combinations in which
the other three walls were either insulated or cooled. For the derived isosceles
triangular cavities, the two most recent papers that have been reported in the open
literature are those of Salmun (1995) and Holtzmann et al. (2000) together with the
references cited therein. Salmun (1995) examined a two-dimensional right triangular
cavity filled with air or water having various aspect ratios and pre-selected Rayleigh
numbers. Solutions of the time-dependent conservation equations were obtained using
two different numerical techniques which while yielding different numerical values for
the velocity and temperature fields, did not altered the flow structure of a single
convective cell for low Rayleigh and to multi-cellular regime for high Rayleigh. The
finite element method was employed by Holtzmann et al. (2000) to model isosceles
triangular cavities containing air. These authors used a heated horizontal base and
symmetrically cooled upper inclined walls for aspect ratios of 0.2, 0.5 and 1.0 and a
variety of Grashof numbers ranging from 103 to 105. In one cavity of fixed aspect ratio,
they also conducted a flow visualization study with smoke to validate experimentally
the existence of the numerical prediction of the symmetry-breaking pitchfork
bifurcations. They also observed that this anomalous phenomenon intensified as

Thermal
convection

intensity

339



Grashof increased gradually. The major conclusion drawn in this paper was that
regardless of the symmetrical and non-symmetrical plumes, the differences in the mean
Nusselt number were of the order of 5 percent.

With the dual goal at maximizing the convection heat transport in cavities and
minimizing their sizes, the present study seeks to compare the two basic cavities: the
square (A ¼ 1) and the horizontal rectangle (A ¼ 2) against the two derived cavity
shapes: the isosceles triangle and the right-angle triangle. The peculiarity of the
derived cavities is their cross-section area being half of the cross-section area of
the basic cavities.

The body of the present paper is divided into three sections. The three physical
systems involving the two basic cavities (square and horizontal rectangular) and the
two derived cavities (isosceles and right-angled triangle) and the mathematical
formulations are addressed in the first section. The computational procedure and the
mandatory validation are explained in the second section. The third section culminates
with a discussion of the velocity fields, temperature fields, and total heat transfer rates
for the two basic cavities and the two derived cavities.

Physical systems
The three physical systems under study consist of a horizontal rectangular cavity of
variable aspect ratio (A ¼ 1 and 2) shown in Figure 1(a), circumscribing an isosceles
triangular cavity (Figure 1(b)) and a right-angle triangular cavity (Figure 1(c)). The
base, common to the three configurations, is heated with a prescribed high
temperature. The remaining walls of each of the three cavities are cooled with a

Figure 1.
Sketch of a rectangular
cavity and the inscribed
isosceles and right triangle
cavities
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prescribed low temperature. The gravitational acceleration acts perpendicular to the
base. The dimension normal to the plane of the diagrams is assumed to be long enough,
so that the circulatory flows are conceived with two-dimensional motion. The working
fluid is air (Pr ¼ 0.71). To avoid restrictions imposed by the Boussinesq
approximation, the participating thermophysical properties of air such as density,
viscosity, specific heat capacity and thermal conductivity are taken as temperature
dependent. The set of unsteady conservation equations governing the laminar velocity
and temperature fields is:
Mass:
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The symbol rr in equation (3) stands for the air density evaluated at a reference
temperature Tr ¼ (TH þ TC)/2.

The velocity boundary conditions are based on the assumptions that all cavity
walls are rigid and impermeable and also that the moving fluid does not slip at the walls.
Prescribed temperature boundary conditions are imposed at the heated and cooled walls.

Numerical computations
To preserve uniformity, the computational domains are coincident with the physical
domains in the three different cavities. Finite-volume solutions of equations (1)-(4),
subject to the imposed boundary conditions determine the laminar velocity and
temperature fields in the air-filled cavities under the influence of appropriate
height-based Grashof numbers. The finite volume method is used to perform the
numerical calculations within the FLUENT code platform (FLUENT Reference
Manual, 2002). In this framework, the second-order-accurate quick and simple schemes
facilitate the discretization of the convective term and the pressure-velocity coupling in
the conservation equations (1)-(4).

Based on a sequence of numerical experiments, it was found that the optimal
computational mesh that renders grid independent solutions consists of 20,000
quadrilateral elements for the square and the rectangular cavities and 62,000 triangular
elements for the isosceles and the right triangular cavities. Care was taken to increase
the element density in sensitive areas where pronounced velocity and temperature
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gradients would occur, such as near the walls with special emphasis in the wall
intersections. The grid layouts chosen rendered reliable air velocity and temperature
fields for the selected Grashof numbers in the interval 103 # GrH # 106. Grid
independence was achieved within one percent for the six cavities at the highest
Grashof number, i.e. GrH ¼ 106.

Local convergence was assessed by monitoring the magnitude of mean convective
coefficient h along the heated base wall, whereas global convergence was guaranteed
by controlling the residuals of the conservation equations (1)-(4). The criteria adopted
for the convergence of the laminar velocities and temperature fields is the norm:

1

fmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

fnþ1
i 2 fn

i

� �2

vuut # 1 ð5Þ

where typically 1 ¼ 1024. It was noticed that further decreases in 1 do not cause any
significant changes in the numerical results. Additionally, the overall energy balance,
written in terms of the integrated heat transfer rate through the thermally active walls
is equal. After the convergence of the velocity and temperature fields was attained, the
streamlines and isotherms were calculated.

The local wall heat flux along the hot base wall qw(x) was found by applying
Fourier’s law at this wall which is common to the basic and derived cavities. This step
leads to the computation of the mean wall heat flux Qw along the hot base wall:

Qw ¼
1

L

Z L

0

qwðxÞdx ð6Þ

Subsequently, the mean Nusselt number NuH is obtained from the relation:

NuH ¼
QwH

kðTH 2 TCÞ
ð7Þ

where the air thermal conductivity k is evaluated at the reference temperature
Tr ¼ (TH þ TC)/2.

Two validations of the numerical code have been done. First, using a reference
square cavity with hot and cold vertical sidewalls and two insulated horizontal walls.
At the local level, the magnitude of the dimensionless vertical velocity Vmax ¼ 221.80
at a relatively high value RaH ¼ 106 is within 5 percent of the benchmark results of
217.36 by De Vahl Davis (1983). Also at the global level for RaH ¼ 106, agreements to
less than 1 percent of the mean Nusselt number NuH ¼ 8.75 in this work vs 8.799 by De
Vahl Davis (1983) are obtained. Second, employing the experimental measurements in
an isosceles triangle conducted by Flack (1980). We chose an isosceles triangle holding
an intermediate apex angle of 458 between the bottom wall and the inclined walls as
representative. Figure 2 shows the excellent parity between the experimental and the
numerical Nusselt numbers NuH for both heating/cooling scenarios. For case 1 (hot
upper walls and cold bottom wall), the invariance of NuH with the Grashof number
GrH, staying around 4.63, indicates that the heat is transported by conduction. For case
2 (cold upper walls and hot bottom wall), NuH exhibited a power law dependence with
GrH. The maximum deviation between the numerical and experimental Nusselt
number is within 3.5 percent for both cases.
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Discussion of numerical results
The six closed spaces filled with air, the square and the rectangle (RE), the two
isosceles triangle cavities (IT) and the two right-angle triangle (RT) cavities sharing the
same hot base are shown in Figure 1. It is worth recognizing that the size of the IT and
RT cavities are equivalent to half of the square and rectangular cavities with different
shapes. The base wall is held at TH and the remaining walls are held at TC with
TH . TC. The Prandtl number has been fixed to 0.71, and the Grashof number ranged
from 103 to 106. First, the flow and temperature fields, as well as the heat transfer rates
are examined for the square cavity owing an aspect ratio A ¼ 1. This format is
repeated for the rectangular cavity having an aspect ratio A ¼ 2. Later, the effect of the
aspect ratio on the thermo-fluid performance of the group of cavities are presented and
discussed. Also, the main objective in every case (A ¼ 1 and 2) is to search for the
original or derived geometries that are capable of maximizing the global heat transfer
across the cavity when dividing the square and rectangular cavities in half.

Case 1: cavities with A ¼ 1
The streamlines and isotherms forGrH ¼ 103 and 106 are shown in Figures 3 and 4. In all
the streamline plots, the contour lines correspond to equispaced absolute values of the
stream function c. Likewise, in all the isotherm plots, the contour lines correspond to
equispaced values of the temperature T(x, y) in the range between 287 and 313 K.

At GrH ¼ 103, the fluid systems are placed slightly above the critical state, which
corresponds to the onset of thermal convection. The critical Grashof number for the
three geometries lies approximately between 102 and 103. The steady-state patterns are
characterized by two counter rotating vortices. It is observable that this solution is
symmetric for the square and the IT cavities. The convective motion is oriented
upward in the central region (hot stream) and downward near the sidewalls
(cold stream). The strength of the vortices rotation can be determined by calculating

Figure 2.
Comparison between the

numerical and
experimental mean

Nusselt numbers within
an isosceles triangular

cavity for case 1 (hot upper
walls and cold base) and
case 2 (cold upper walls

and hot base)
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the magnitude of the stream function gradient. The RE cavity displays the largest
magnitude for the stream function gradient, while the IT and RT cavities display the
smallest. Therefore, as expected the vortices strength and velocities reach highest
values for the square and lowest for the IT and RT cavities. The isotherms are almost
straight over the whole length of the cavities indicating that the process of heat
transfer across the cavities is basically dominated by conduction. When GrH is
increased to 106, the qualitative shape of the counter rotating cells remains the same as
shown in Figure 4. However, the magnitude of the velocity gradients increases by three
orders of magnitude creating as a result higher fluid velocities. Consequently, this
trend indicates that convection is progressively dominating the process of heat

Figure 3.
Plots of stream functions
and isotherms for A ¼ 1
and GrH ¼ 103
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transfer. The strength of the vortices is also increased as seen by the magnitude of the
stream function gradient. Regarding the results divulged by Holtzmann et al. (2000),
these authors discovered the formation of a symmetry-breaking pitchfork bifurcation,
which occurs at a certain critical Grashof for each aspect ratio considered. The flow
symmetry in the IT is not affected by increments in the GrH for A ¼ 1 and the flow
structure remains symmetric even at high GrH ¼ 106. The isotherms become more
complex, since the natural convection term dominates the conduction term, and tends
to transport the hottest fluid above the coldest fluid.

Figure 5 shows the variation of the dimensionless temperature along the mid-plane
of the three cavities for an intermediate Grashof number of GrH ¼ 105. The thermal

Figure 4.
Plots of stream functions
and isotherms for A ¼ 1

and GrH ¼ 106
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boundary layer grows close to the hot wall when moving from the square to the IT
cavities and the horizontal temperature at the center of the cavity is reduced from
u ¼ 0.62 for the RT to u ¼ 0.59 for the IT to u ¼ 0.42 for the square. In this case, the
pure convection solution is greatly affected by the shape of the cavity in the central
part since the temperature distribution is not only flattened but also shifted downward.

In Figure 6, typical local heat fluxes are presented (GrH ¼ 105) for the heated bottom
wall. The results are illustrated for the three configurations considered. For small
values of X, qw begins with a relatively large value at the point where the temperature
discontinuity X ¼ 0 occurs. The magnitude of qw is typically 300 and 200 percent
higher than for the simple square geometry in the cases of RT and IT, respectively.

Figure 5.
Dimensionless
temperature profiles along
the mid-plane for A ¼ 1
and GrH ¼ 105

Figure 6.
Surface heat flux qw along
the hot base wall for A ¼ 1
and GrH ¼ 105
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As X grows, qw exhibits a positive skewed concave U-shape with respect to the
abscissa X. In the sub-interval 0.05 # X # 0.95, qw stays almost constant showing
subtle variations. This comportment is indicative that considerable thermal convection
has occurred. Further, it is notorious that the qw curve for the RT is the highest as
opposed to the lowest for the RE cavity. This behavior translates into a large heat
transfer rate across the RT cavity when compared against the heat transfer rate across
either the basic square or derived IT cavity.

In Figure 7, the height-based mean Nusselt number NuH is plotted versus the
logarithm of the GrH number for the three interrelated cavities that originate in the
square cavity. Conceivably, the lowermost NuH curve representative of the square
cavity demonstrates the monotonic increase of NuH with increments in GrH number.
This cavity constitutes the natural baseline case for comparison purposes. When the
square cavity is split in half as shown in Figure 1, we obtain the RT and the IT cavities.
The cross-section areas of both are half of the cross-section area of the square. The
overall response of NuH to changes in GrH for the joined RT and IT cavities may be
viewed as the intersection of a horizontal straight line for GrH ! 0 and a positive
sloped straight line for GrH ! 1. The point of intersection of these two lines lies
around a critical GrH < 7 £ 103, which clearly identifies the onset of natural
convection. By visual inspection of the curves in Figure 7, it is revealed that the RT
cavity is better than the IT cavity, and that the IT cavity outperforms the square
cavity. Qualitatively speaking, the items in Table I confirm the superiority of the
RT cavity with respect to the IT cavity. Although the heat transfer enhancement of the
RT cavity relative to the square cavity is of the order of 64 percent at GrH ¼ 103, it is
diminishing in approximately half to 29 percent at GrH ¼ 106. Since the cold perimeter
of a square cavity is 3 units, the companion Table II elucidates a saving in cold
perimeter of 20 percent brought forward the RT cavity. Presumably, this incremental
heat transfer may be attributed to the large cold perimeter of 2.41 units in the RT
cavity as compared to a small cold perimeter of 2.24 units for the IT cavity.

Figure 7.
Variation of the mean

Nusselt number NuH with
Grashof number GrH for

A ¼ 1
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Case 2: cavities with A ¼ 2
Isotherm and streamline contour plots relevant to the trio of RE, RT and IT cavities are
shown in Figure 8 for GrH ¼ 103 and the aspect ratio A ¼ 2. It may be noticed that
the flow structure remains the same as shown in Figure 3. However, the strength of the
rotating vortices was found to be higher for A ¼ 2 when compared against the base
case with A ¼ 1. This pattern suggests that natural convection starts at very early
Grashof numbers for A ¼ 2. As Grashof number increased to 8 £ 105, the circulation
patterns for the RT and IT cavities are radically changed and stayed symmetric for RE
cavity. For the RT cavity, secondary vortices appear in the right corner of the cavity as
shown in Figure 9(b). These new vortices push the main vortex towards the center and
contribute to increase the heat transfer across the cavity. As the Grashof number is
invigorated to 8 £ 105, four rotating cells showed up in the IT cavity; this can be seen
in Figure 9(c). These new cells again move warm fluid from the hot wall and help to
enlarge the overall heat transfer. In addition to the new vortices formation, the
strength of the original vortices is higher compared to the base case shown in Figure 4.
The direct effect of these new vortices on the temperature field can be seen on the
isotherm plots, where two streams of warm fluid are directed upward from the hot
wall.

The centerline temperature profiles are shown in Figure 10 for an intermediate
Grashof number GrH ¼ 105. In this figure, large temperature drops are manifested near
the top and bottom of the cavity, i.e. in the thermal boundary layer. The remaining
central portion of the cavities remains almost isothermal and the temperature at the
center of the cavity is reduced from u ¼ 0.69 for the RT to u ¼ 0.56 for the IT to
u ¼ 0.47 for the RE cavity. When compared to the base case, we should expect subtle
temperature changes in the central region of the cavities, and as a consequence, the
shape of the temperature profiles persists.

The effect of the aspect ratio upon the local heat flux along the hot base is shown in
Figure 11, where qw is plotted vs the coordinate along the base for each geometry
sharing A ¼ 2. Again qw begins with large value at the point where the discontinuity
X ¼ 0 occurs. This value is highly affected by the increase of the aspect ratio.

GrH ¼ 103
Heat transfer

enhancement (percent) GrH ¼ 106
Heat transfer

enhancement (percent)

Square (RE) NuH ¼ 7.3 – NuH ¼ 14 –
Isosceles triangle
(IT) NuH ¼ 11.5 58 NuH ¼ 17.5 25
Right-angle
triangle (RT) NuH ¼ 12 64 NuH ¼ 18 29

Table I.
Heat transfer
enhancement of the
inscribed triangular
cavities with respect to
the square cavity

Cold perimeter (units) Cold perimeter saving (percent)

Square (RE) 3 –
Isosceles triangle (IT) 2.24 25
Right-angle triangle (RT) 2.41 20

Table II.
Relationship between the
cold perimeters of the
square cavity and the two
inscribed triangular
cavities
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Compared to the base case, qw decreases from 1,300 to 700 W/m2 for the RT, from 800
to 750 W/m2 for the IT and from 420 to 250 W/m2 for the RE cavity. As X increases qw

decreases quickly in the sub-interval 0 # X # 0.05. After that, the qw curve is almost
constant in the sub-interval 0.05 # X # 0.95 but is characterized by the presence of
peaks. Each peak is the result of an upward stream between two rotating vortices,
which remove heat from the hot wall and contribute to the overall heat transfer across
the cavity. Clearly, the magnitude of each peak is proportional to the strength of the
corresponding vortex. Approaching to the X ¼ 1 discontinuity, qw increases quickly to
reach high values indicating that a sizable heat transfer has occurred by conduction in
this region. It is worth mentioning here that when A climbs to 2, qw turns out to be the

Figure 8.
Plots of stream functions
and isotherms for A ¼ 2

and GrH ¼ 103
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highest for the IT case, intermediate for the RT case and the lowest for the RE case.
This sequential pattern opposes the one for the base case where the RT exhibits the
largest local heat flux along the hot wall.

The wall heat flux predictions qw vs X associated with various GrH were
transformed into mean Nusselt number NuH and the outcome is plotted later in
Figure 12. It can be seen in this figure that the shape of the NuH family of curves for
A ¼ 2 follows the footsteps of its counterpart for A ¼ 1 in Figure 7. However, as A
doubled from 1 to 2, NuH gets reduced.

Shown in Figure 12 is the height-based mean Nusselt number NuH varying with the
logarithm of the GrH number for the three interrelated cavities that originate in the

Figure 9.
Plots of stream functions
and isotherms for A ¼ 2
and GrH ¼ 8 £ 105
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horizontal rectangular cavity. Again, the lowermost NuH curve representative of the
rectangular cavity ascends monotonically with increments in GrH number. This cavity
constitutes the natural baseline case for comparison purposes. When the rectangular
cavity is split in half as shown in Figure 1, we obtain the inscribed RT and IT cavities.
As before, the cross-section areas of both are half of the cross-section area of the
rectangular cavity. The overall response of NuH to changes in GrH for the joined RT
and IT cavities may be viewed as the intersection of a horizontal straight line for
GrH ! 0 and a positive sloped straight line for GrH ! 1. The point of intersection of
these two lines lies around a critical GrH < 104, which clearly identifies the onset of

Figure 10.
Dimensionless

temperature profiles along
the mid-plane for A ¼ 2

and GrH ¼ 105

Figure 11.
Surface heat flux qw along
the hot base wall for A ¼ 2

and GrH ¼ 105
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natural convection. By visual inspection of the curves in Figure 12, it is revealed that in
this case the IT cavity is better than the RT cavity, and that the RT cavity outperforms
the rectangular cavity. From a qualitative perspective, an inspection of the items in
Table III reveals the superiority of the IT cavity with respect to the RT cavity.
Although the heat transfer enhancement of the IT cavity relative to the rectangular
cavity yields a remarkable 108 percent at GrH ¼ 103, it diminishing in approximately a
quarter to 27 percent at GrH ¼ 106. Since the cold perimeter of a rectangular cavity is
4 units, it can be seen in the companion Table IV that the IT cavity brought forward a
saving in cold perimeter of 29 percent. Supposedly, a larger cold perimeter of 2.83 units

GrH ¼ 103
Heat transfer

enhancement (percent) GrH ¼ 106
Heat transfer

enhancement (percent)

Rectangle (RE) NuH ¼ 4 – NuH ¼ 11 –
Right-angle
triangle (RT) NuH ¼ 6.5 63 NuH ¼ 12.5 14
Isosceles triangle
(IT) NuH ¼ 8.3 108 NuH ¼ 14 27

Table III.
Heat transfer
enhancement of the
inscribed triangular
cavities with respect to
the horizontal rectangular
cavity (A ¼ 2)

Figure 12.
Variation of the mean
Nusselt number NuH with
Grashof number GrH for
A ¼ 2

Cold perimeter (units) Cold perimeter saving (percent)

Rectangle (RE) 4 –
Right-angle triangle (RT) 2.24 44
Isosceles triangle (IT) 2.83 29

Note: Relationship between the cold perimeters of the horizontal rectangular cavity (A ¼ 2) and the
two inscribed triangular cavitiesTable IV.
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in the IT cavity as compared to a small cold perimeter of 2.24 units for the RT cavity
may be the cause for the incremental heat transfer.

A side comment could be added. In the event that extra heat needs to be transferred
in the derived cavities, regardless of the aspect ratio the sharp wall intersections can be
curved as suggested by Campo and Ridouane (2005).

Unsteady analysis
Responding to a question raised by the referee, the temporal distortion of the plume is
explained now. For the IT cavity, beginning with GrH ¼ 103, as the Grashof number is
increased, the symmetric plume disappears and a pitchfork bifurcation is created at a
critical value of Grashof number, say GrH,C. Above this critical value, two steady-state
solutions are possible; the first is plotted in Figure 9(c) and the second is the image of
the first through a vertical mirror which is characterized by cells rotating in opposite
directions when compared to the first solution. The critical value GrH,C ¼ 2 £ 105 is
obtained for the IT cavity with A ¼ 2. Particular care was taken in order to show how
the temporal changes triggered by the flow structure, underwent. Unsteady
calculations were performed to illustrate the flow structure evolution with time at
GrH ¼ GrH,C. The initial perturbations at t ¼ 0 come from the symmetrical
steady-state solution at GrH ¼ 105. The flow visualization in terms of isotherms is
plotted at selected times during the transition and the outcome is shown in Figure 13.
At t ¼ 76.6 min, Figure 13(a) shows that the flow is still symmetrical with respect to
the mid-plane. Slight deformations are observed when t reaches the value of 146.7 min.
At this instant, the right cell increased and passed the mid-plane while the left cell
remains in the corner but diminishes in size (Figure 13(b)). This behavior intensifies
with time; the right clockwise cell dominates over the left cell when time increases.
Figure 13(c) and (d) shows the evolution of the isotherms at t ¼ 183.5 and 228.3 min,
respectively. This behavior continues until the flow patterns reach the new
steady-state at t ¼ 293.1 min. Further increments in time do not affect the flow and
temperature distribution. The final steady-state condition at GrH ¼ 2 £ 105 is shown in
Figure 13(e) at t ¼ 395.8 min.

Concluding remarks
The study of natural convection heat transfer in air-filled square and horizontal
rectangular cavities with aspect ratio A ¼ 2 in conjunction with two viable isosceles
triangular cavities and right-angle triangular cavities inscribed inside the square
and horizontal rectangular cavities has been studied numerically. Limited
experimental validation has been provided. The compounded effects of the aspect
ratio and the Grashof number on the steady-state solutions for each geometry are
investigated in detail. Whenever A ¼ 1, symmetric velocity and temperature fields
are obtained for the square and IT cavities covering the entire range of GrH
explored, namely (103-106). However, as A is enlarged to 2, the plume symmetry
breaks down and disappears in the case of the IT cavity. Thereafter, a pitchfork
bifurcation creates an anti-symmetric plume at a critical Grashof number,
GrH,C ¼ 2 £ 105. The evolution of the flow structure with time is reported in
detailed form to illustrate how this physical transition manifests. At high Grashof
numbers, secondary vortices appear for the RT and the IT cavities being
instrumental in the intensification of the overall heat transfer across the cavity.
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The temperature at the central region of the cavity was susceptible to geometry
changes and also to modifications in the two aspect ratios. In term of heat transfer,
at a small aspect ratio (A ¼ 1), the RT cavity is capable of transferring 8.7 percent
more heat compared to the IT and 71 percent more compared to the RE under the
conduction regime (GrH ¼ 103). The heat transfer enhancement is not as notorious
for the natural convection regime, they drop to 3 and 29 percent (GrH ¼ 106)
compared to IT and RE, respectively. Conversely at A ¼ 2, the IT is found to be the
best for purposes of heat transfer through the horizontal base wall. Compared to the
related RT and RE cavities, the benefits inherent to the IT is 28 and 107 percent in
the conduction regime, dropping down to 13 and 31 percent at high GrH ¼ 8 £ 105.

Figure 13.
Temporal evolution of the
flow structure during the
transition from a
symmetrical steady-state
condition to an
asymmetrical steady-state
condition at GrH,C
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